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We employ a fourth-order compact finite difference scheme (FOS) with the multi-
grid algorithm to solve the three dimensional Poisson equation. We test the influ-
ence of different orderings of the grid space and different grid-transfer operators on
the convergence and efficiency of our high accuracy algorithm. Fourier smoothing
analysis is conducted to show that FOS has a smaller smoothing factor than the tra-
ditional second-order central difference scheme (CDS). A new method of Fourier
smoothing analysis is proposed for the partially decoupled red-black Gauss–Seidel
relaxation with FOS. Numerical results are given to compare the computed accuracy
and the computational efficiency of FOS with multigrid against CDS with multi-
grid. c© 1998 Academic Press

1. INTRODUCTION

Numerical simulation of three-dimensional (3D) problems tends to be computationally
intensive and may be prohibitive on conventional computers due to the requirements on the
memory and CPU time to obtain solution with desirable accuracy. Traditional numerical
schemes have low accuracy and thus require fine discretizations. The size of the resulting
linear systems is usually so large that even the state-of-the-art computers may not be able
to handle them directly. There are at least two ways to alleviate these difficulties: one is
to decompose the computational domain into smaller ones so that each subproblem on
a subdomain can be solved at a time, or all subprobelms can be solved simultaneously
on parallel computers. This is the basic idea of domain decomposition methods. Another
approach is to use high-order or spectral methods, which usually yield comparable accuracy
with much coarser discretizations, resulting in linear systems of smaller size.

In the two dimensional (2D) case, the high-order multigrid methods for the Poisson
equation were studied by Schaffer [10] and a comparison of the second-order scheme and
the fourth-order scheme with the multigrid method was recently investigated by Gupta,
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Kouatchou, and Zhang [6]. It was found that the fourth-order scheme is computationally
more efficient than the second-order scheme. To obtain a computed solution of given accu-
racy, the fourth-order scheme may be hundreds of times faster and uses less memory than
the second-order scheme.

In this paper, we consider the 3D Poisson equation

−1u(x, y, z) = f (x, y, z), (x, y, z) ∈ Ä, (1)

whereÄ is a continuous convex domain in 3D space with suitable boundary conditions
prescribed on its boundary∂Ä.

The traditional central difference scheme (CDS) for Eq. (1) is a 7-point formula

6ui, j,k − (ui +1, j,k + ui −1, j,k + ui, j +1,k + ui, j −1,k + ui, j,k+1 + ui, j,k−1) = h2 fi, j,k, (2)

whereh is the uniform meshsize. The approximation (2) has a truncation error ofO(h2). A
fourth-order compact approximation scheme (FOS) for Eq. (1) was derived by Kwon and
Stephenson [9] (see Fig. 1 for the stencil coefficient representation)

24ui, j,k − 2(ui +1, j,k + ui −1, j,k + ui, j +1,k + ui, j −1,k + ui, j,k+1 + ui, j,k−1)

− (ui +1, j +1,k + ui −1, j +1,k + ui +1, j −1,k + ui −1, j −1,k + ui +1, j,k+1 + ui −1, j,k+1

+ ui, j +1,k+1 + ui, j −1,k+1 + ui +1, j,k−1 + ui −1, j,k−1 + ui, j +1,k−1 + ui, j −1,k−1)

= h2

2
(6 fi, j,k + fi +1, j,k + fi −1, j,k + fi, j +1,k + fi, j −1,k + fi, j,k+1 + fi, j,k−1). (3)

This 19-point formula has a truncation error ofO(h4). In fact, fourth-order finite diff-
erence methods for 3D general linear elliptic problems with variable coefficients were
studied by Ananthakrishnaiah, Manohar, and Stephenson [1], but our attention in this paper
is restricted to the Poisson equation.

A natural procedure after the development of high-order schemes is to test if these new
schemes fit into some existing popular fast solution methods. In the 3D case, fast iterative
methods seem to be necessary due to the large dimension of the problems. A particularly
important iterative method for the Poisson equation is the multigrid method, which has been
well studied in the 2D case [6] and in the 3D case with CDS [5, 11, 12].

FIG. 1. Stencil coefficients of the 19-point scheme for the 3D Poisson equation.
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We investigate the issue of using FOS with the multigrid method for solving Eq. (1) in this
paper. We test the influence of the relaxation schemes, different ordering of the grid space,
and different grid-transfer operators on the convergence and efficiency of our high accuracy
algorithm. We conduct Fourier smoothing analysis to show that FOS has a better smoothing
effect than CDS. We also compare our FOS-multigrid method with CDS-multigrid method.
A new method of Fourier smoothing analysis is proposed to analyze the partially decoupled
red-black Gauss–Seidel relaxation with FOS.

This paper is organized as follows. In Section 2, we briefly introduce the multigrid method
and the individual operators that will be used in our numerical experiments. We conduct
some Fourier smoothing analysis in Section 3. We give a brief cost analysis in Section 4.
Section 5 contains results of our numerical experiments and related remarks. Conclusions
are given in Section 6.

2. MULTIGRID METHOD

The multigrid method is one of the most efficient iterative methods to solve a linear system
from discretized elliptic differential equations. It tries to solve the problems on a series of
coarse grids and interpolates coarse grid correction back to the fine grids. Considerable
computer time is saved by doing major computational work on the coarse grids.

One iteration of a simple multigrid V-cycle algorithm consists of smoothing the error
using a relaxation technique (e.g., the Jacobi and Gauss–Seidel methods), solving an app-
roximation to the smooth error equation on a coarse grid, interpolating the error correction
to the fine grid, and finally adding the error correction into the current approximation. An
important aspect of the multigrid method is that the coarse grid solution can be approximated
by recursively using the multigrid idea. That is, on the coarse grid, relaxation is performed
to reduce the high frequency errors followed by the projection of a residual equation on yet
a coarser grid, and so on. Thus, the multigrid method requires a series of problems to be
solved on a hierarchy of grids with different meshsizes. A multigrid V-cycle is the process
that goes from the finest grid down to the coarsest grid and moves back from the coarsest
up to the finest. A V(ν1, ν2)-cycle is a multigrid V-cycle algorithm that performsν1 relaxa-
tions on each level before projecting the residual to the coarse grid (pre-smoothing), and
performsν2 relaxations after interpolating the coarse grid correction back to the fine grid
(post-smoothing). For other multigrid cycling algorithms, we refer to the books of Briggs
[4] and Wesseling [15].

The most important operator in the multigrid method is the relaxation operator (the
smoother). Its role is not to remove the errors, but to dump the high frequency components
of the errors on the current grid while leaving the low frequency components to be re-
moved by the coarser grids. Thole and Trottenberg [11] found that the standard coarsening
technique (the coarse grid meshsize doubles that of the fine grid) and (suitable) pointwise
relaxation give good smoothing for the isotropic problems. Suitable point relaxations are the
lexicographic or red-black Gauss–Seidel methods. The difference of these two methods is
the order that the grid points are visited. In the lexicographic Gauss–Seidel (LGS), the grid
points are visited in the natural order and the old values are updated as soon as the new values
are available. The grid points may also be ordered in a checkerboard fashion in the alternat-
ing red and black order. For the 7-point scheme with the red-black Gauss–Seidel (RBGS),
the updating of the red points only uses values at the black points, and vice versa. Hence
the red and the black points are completely decoupled and the updating of both groups may
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FIG. 2. Stencil for the 3D full-weighting operator.

be done in parallel. This is certainly beneficial on parallel computers. However, it has been
found that the red-black ordering also has a better smoothing effect than the natural ordering
[14]. When the 19-point scheme is used with Gauss–Seidel, the grid points are not com-
pletely decoupled by the red-black ordering. However, both analytical and numerical results
[6, 14] suggested that at least in the 2D case, the partially decoupled red-black Gauss–Seidel
relaxation with the high-order scheme offers a better smoothing effect than some of the fully
decoupled relaxations (with more colors).

The prolongation operator is the tri-linear interpolation. Specifically, the values of the
common points of the fine and coarse grids are directly transferred. Depending on the lo-
cation, values of other fine grid points are obtained by averaging the values of the nearest
two, four, or eight points on the coarse grid. For detailed formulas, see Wesseling [15,
p. 67].

The residual restriction operator is the direct injection or the full-weighting. The injection
operator directly transfers the residual values at the fine grid points to the corresponding
coarse grid points. Thus we need only to evaluate the residuals at those grid points, which are
about one-eighth of the total fine grid points. On the other hand, the full-weighting operator
needs to evaluate residuals at all fine grid points and then projects a weighted average of the
nearest 27 points in a cube centered at the reference point. For convenience, the stencil for
the full-weighting operator is given in Fig. 2. We remark that the full-weighting operator in
its matrix form is a transpose of the tri-linear interpolation operator up to the difference of
a constant factor.

The full-weighting operator is more accurate than the injection operator. However, since
the cost of the multigrid method using the full-weighting operator is approximately equi-
valent to one relaxation sweep more than that of the multigrid method using the injection
operator, the efficiency of the overall scheme will be affected by the trade-off between more
relaxation sweeps and more accurate restriction operators. In the case of the 7-point scheme
and on vector computers, these trade-offs were studied by Gary, McCormick, and Sweet
[5]. They preferred simpler (cheaper) grid-transfer operators with strong relaxation over the
complicated (costly) inter-grid operators.

3. FOURIER SMOOTHING ANALYSIS

The convergence rate of the multigrid method may be predicted by Fourier smoothing
analysis.
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We assume a domainÄ = (0, 1)3, periodic boundary conditions, a uniform difference
molecule, and row-wise upward point-numbering in eachxy plane marching along the
z direction. Our methodology and notations are similar to those used by Kettler [8]. For
convenience, let

Ax = b (4)

be the linear system under consideration.
Relaxation on a linear system of the form (4) is given by

uk+1 = uk + K −1rk (rk = f − Auk is the residual),

whereK = A+ N is an approximation ofA such thatK −1rk is easy to compute. Then, the
error afterk + 1 relaxationsek+1 = u − uk+1 can be calculated from

ek+1 = K −1Nek.

We now expand the error in a Fourier series (of eigenfunctions ofK −1N) as

ek(x, y, z) =
∑

θ=(θ1,θ2,θ3)

εk
θei (θ1x+θ2y+θ3z),

where−π ≤ θ1, θ2, θ3 ≤ π and i = √−1. We define the reduction factor of theθ =
(θ1, θ2, θ3) Fourier component (which is only a function ofθ and independent ofk) by

ρ(θ) = εk+1
θ

εk
θ

.

For the problem considered in this paper,K andN are periodic Toeplitz matrices. We denote
their coefficients bysj andv j , respectively( j = ( j1, j2, j3) ∈ Z ×Z ×Z). ρ(θ) can then
be calculated from

ρ(θ) =
∣∣∑

j ∈Jv
v j ei ( j ·θ)

∣∣∣∣∑
j ∈Js

sj ei ( j ·θ)
∣∣ . (5)

Typically, when the equations are stable, the periodic boundary analysis gives accurate
convergence predictions for problems with the Dirichlet boundary conditions.

We define

2H =
{

(θ1, θ2, θ3) | −π ≤ θ1, θ2, θ3 ≤ π, |θ1| ≥ π

2
, and/or|θ2| ≥ π

2
, and/or|θ3| ≥ π

2

}
,

i.e., 2H is the region of Fourier components that have a high frequency relative to the
meshsizeh. The smoothing factor ¯ρ is defined as

ρ̄ = sup
θ∈2H

ρ(θ),

which tells how well the relaxation method (smoother) damps the high frequency compo-
nents. The low frequency components are removed on the coarse grids.
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3.1. Smoothing Factors for LGS Relaxation

For the LGS relaxation, the coefficient matrix is split asA = D − L − U , whereD is
the diagonal ofA, −L is the strictly lower triangular, and−U the strictly upper triangular
parts ofA. We haveK = D − L and N = U , so that the smoothing factor of the LGS
relaxation with CDS is given by

ρ̄CDS(θ) = sup
θ∈2H

|ei θ1 + ei θ2 + ei θ3 |
|6 − e−i θ1 − e−i θ2 − e−i θ3 |

= sup
θ∈2H

√
3 + 2[cos(θ1 − θ2) + cos(θ2 − θ3) + cos(θ3 − θ1)]

39+ 2[cos(θ1 − θ2) + cos(θ2 − θ3) + cos(θ3 − θ1)] − 12(cosθ1 + cosθ2 + cosθ3)
. (6)

It is possible to find the exact value of ¯ρCDS(θ) by solving the optimization problem (6)
analytically. However, the work seems to be much involved, especially when we compute
the smoothing factor involving FOS later. Hence, we numerically solved (6) and obtained
ρ̄CDS(θ) ≈ 0.5669. Note that the smoothing factor of LGS with CDS in the 2D case is 0.5
[3], hence the 3D multigrid Poisson solver with LGS-CDS converges more slowly than its
2D counterpart.

Similarly, the smoothing factor of the LGS relaxation with FOS is

ρ̄FOS(θ) = sup
θ∈2H

2(ei θ1 + ei θ2 + ei θ3) + ei (−θ1+θ2) + ei (θ1+θ2) + ei (−θ1+θ3) + ei (−θ2+θ3) + ei (θ1+θ3) + ei (θ2+θ3)∣∣∣∣ 24− 2(e−i θ1 + e−i θ2 + e−i θ3)

−(ei (−θ1−θ2) + ei (θ1−θ2) + ei (−θ1−θ3) + ei (−θ2−θ3) + ei (θ1−θ3) + ei (θ2−θ3))

∣∣∣∣
≈ 0.4793. (7)

We see that ¯ρFOS(θ) < ρ̄CDS(θ), which means that the multigrid method with FOS is sup-
posed to converge faster than that with CDS.

3.2. Smoothing Factor for RBGS Relaxation with FOS

To the best of our knowledge, there has been no published report on how to perform a
Fourier smoothing analysis for the 3D 19-point scheme with the partially decoupled RBGS
relaxation. Even in the 2D case with a 9-point scheme, some smoothing factors were given
by Stüben and Trottenberg [14] without mentioning how to obtain them. The difficulty
involving the 19-point RBGS smoothing is that the grid points are only partially decoupled
so that the ordinary (lexicographic) Gauss–Seidel and the fully decoupled Gauss–Seidel
smoothing analyses are not applicable.

Let the grid space be colored by red and black in a checkerboard fashion as in Fig. 3.
The first half sweep is to update all the red points only. Within all the red points, the

relaxation is performed lexicographically. Each red point is updated by using 6 old (un-
updated) black points, 6 old (un-updated) red points, and 6 new (updated) red points. We
use the idea of the lexicographic Gauss–Seidel relaxation (with the new and old values of
the grid points in mind) and compute the reduction factor of the Fourier modes as

ρred(θ) =

∣∣∣∣ 2(ei θ1 + ei θ2 + ei θ3 + e−i θ1 + e−i θ2 + e−i θ3)

+ ei (−θ1+θ2) + ei (θ1+θ2) + ei (−θ1+θ3) + ei (−θ2+θ3) + ei (θ1+θ3) + ei (θ2+θ3)

∣∣∣∣∣∣24− (ei (−θ1−θ2) + ei (θ1−θ2) + ei (−θ1−θ3) + ei (−θ2−θ3) + ei (θ1−θ3) + ei (θ2−θ3)
)∣∣ .

(8)
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FIG. 3. Red-black ordering of the 3D grid points centered at a red point.

The second half sweep is performed on black points only. Each black point is (in lexico-
graphic order) updated by using 6 new (updated) red points, 6 old (un-updated), and 6 new
(updated) black points. (This can be viewed in Fig. 3 by interchanging the positions of the
red and black points.) The reduction factor of the Fourier modes by the second half sweep
is

ρblack(θ) =
∣∣ei (−θ1+θ2) + ei (θ1+θ2) + ei (−θ1+θ3) + ei (−θ2+θ3) + ei (θ1+θ3) + ei (θ2+θ3)

∣∣∣∣∣∣ 24− 2(ei θ1 + ei θ2 + ei θ3 + e−i θ1 + e−i θ2 + e−i θ3)

−(ei (−θ1−θ2) + ei (θ1−θ2) + ei (−θ1−θ3) + ei (−θ2−θ3) + ei (θ1−θ3) + ei (θ2−θ3)
) ∣∣∣∣ . (9)

The smoothing factor of the partially decoupled red-black Gauss–Seidel relaxation with the
19-point scheme is the average of those of the two half sweeps, i.e.,

ρ̄red-black(θ) = sup
θ∈2H

√
ρred(θ)ρblack(θ) ≈ 0.3947. (10)

Comparing (10) with (7), we conclude that the multigrid method using the 19-point scheme
with the RBGS relaxation converges faster than that with the LGS relaxation, given that the
other components of the multigrid method are idealized.

We note that the idea that we used to analyze the partially decoupled RBGS relaxation
is somewhat analogous to that we used in the heuristic residual analysis to develop some
scaled residual injection operator for the 2D RBGS relaxation with the standard and the
high-order schemes, see [16, 17]. The essential idea behind these analyses is that both the
geometry of the grid space and the relaxation pattern (order) are taken into consideration.

4. COST ANALYSIS

In the context of the multigrid method, the right-hand side of Eq. (3) is only evaluated
once. This evaluation needs only to be done once on the finest grid when the initialization
of data is performed; we may define the right-hand side of (3) as

Fi, j,k = 1

2
(6 fi, j,k + fi +1, j,k + fi −1, j,k + fi, j +1,k + fi, j −1,k + fi, j,k+1 + fi, j,k−1).

The computation offi, j,k for grid points close to the boundary requires the knowledge of
f (x, y, z) on ∂Ä; we assume thatf (x, y, z) is extended naturally to∂Ä.
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To access the computer’s memory more efficiently, we use a long vector to store both
ui, j,k and fi, j,k (Fi, j,k) for all grids. On the coarse grids,ui, j,k and fi, j,k are the coarse grid
correction and residual, respectively. We note that there is no need to store the coefficient
matrices for both schemes and thus the storage costs for both schemes are the same. On the
other hand, the operation count for one relaxation with CDS is 7; it is 20 with FOS. Thus
one relaxation sweep or residual evaluation with FOS is 20/7 ≈ 3 times as expensive as
that with CDS.

5. NUMERICAL EXPERIMENTS

We conduct numerical experiments using the multigrid method with different relaxation
schemes and residual restriction operators. Our two test problems are chosen the same as
those used by Spotz and Carey [13].

For each discretization scheme, we test the LGS and RBGS relaxations as the smoothers.
Both cases are tested with the full-weighting operator. We also test LGS with the injection
operator. Their performances will be compared.

The problems are discretized on a unit cube(0, 1)3 with different values of meshsize. The
multigrid V-cycle algorithm is complete, i.e., the coarsest grid contains only one unknown
and one relaxation sweep is used to obtain the solution there. All computations are done on
a SUNsparc station using the Fortran 77 programming language in double precision. The
computations are terminated when the discrete residual inL2 norm defined as [18]‖r ‖ =
(h3∑

i, j,k r 2
i, j,k)

1/2 is reduced by a factor of 1010. We record the number of iterations and the
corresponding CPU time in seconds. The maximum errors are the absolute discrete errors
in L∞ norm over all grid points.

5.1. Test Problem1

The first test problem has zero boundary values on the entire∂Ä with a non-zero forcing
function

u(x, y, z) = sin(πx) sin(πy) sin(πz),

f (x, y, z) = 3π2 sin(πx) sin(πy) sin(πz).

Table 1 contains the test results for Test Problem 1 with one pre-smoothing and one post-

TABLE 1

Test Problem 1 withν1 = ν2 = 1 Gauss–Seidel Relaxations

Fourth-order compact scheme Central difference scheme

Injection Red-black Weighting Injection Red-black Weighting

h Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

1/4 8 0.05 8 0.06 8 0.06 12 0.06 12 0.09 11 0.06
1/8 10 0.20 10 0.29 11 0.28 16 0.23 15 0.31 15 0.24
1/16 12 1.90 12 2.62 12 2.32 19 1.58 16 1.83 18 1.99
1/32 13 15.47 12 20.01 13 20.72 24 15.92 17 14.98 19 16.24
1/64 13 140.60 12 176.90 13 192.80 33 192.50 17 126.00 19 141.60

Note.The number of iterations and the CPU time in seconds.
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TABLE 2

Test Problem 1 withν1 = 2,ν2 = 1 Gauss–Seidel Relaxations

Fourth-order compact scheme Central difference scheme

Injection Red-black Weighting Injection Red-black Weighting

h Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

1/4 6 0.05 6 0.06 6 0.06 8 0.05 9 0.06 9 0.06
1/8 8 0.25 8 0.29 9 0.28 12 0.24 12 0.25 13 0.25
1/16 9 1.83 9 2.41 10 2.52 13 1.48 13 1.75 14 1.85
1/32 9 15.55 9 20.35 11 24.05 14 13.78 14 16.00 15 16.72
1/64 9 140.50 9 178.20 11 219.00 14 113.10 14 141.00 15 147.80

Note.The number of iterations and the CPU time in seconds.

smoothing sweep on each level. Hereinafter, in all tables, the column titleInjection refers
to the LGS relaxation with the injection operator;Red-blackrefers to RBGS with the full-
weighting operator;Weightingrefers LGS with the full-weighting operator.

We note that, with the same operators, FOS converges faster than CDS. FOS is more
robust than CDS with respect to the variation of the component operators employed in the
multigrid method. For example, LGS with the injection is satisfactory for FOS, but totally
unsatisfactory for CDS. Due to the high cost of the full-weighting, we find that LGS with
the injection, although it converges slightly slower, takes less CPU time and thus is more
cost-effective than RBGS with the full-weighting. However, so far as the rate of convergence
is concerned, RBGS with the full-weighting is the winner. These numerical results are in
good agreement with the Fourier smoothing analysis results.

Tables 2 and 3 show that additional relaxation sweeps are beneficial for the injection
operator, but seem not beneficial for the red-black ordering as the CPU times were usually
increased. This can be explained as the increase of the smoothing sweeps helps smooth
the residual and makes the weighting scheme unnecessary. In light of the high cost of the
full-weighting, it is more efficient to use LGS with the injection operator.

Table 4 lists the maximum errors for FOS and CDS with different meshsizes. It is clear
that FOS achieves the fourth-order convergence rate as the errors are decreased by a factor

TABLE 3

Test Problem 1 withν1 = ν2 = 2 Gauss–Seidel Relaxations

Fourth-order compact scheme Central difference scheme

Injection Red-black Weighting Injection Red-black Weighting

h Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

1/4 5 0.05 5 0.06 5 0.06 7 0.04 7 0.05 7 0.05
1/8 6 0.20 8 0.34 8 0.35 9 0.19 10 0.23 11 0.24
1/16 7 1.85 8 2.67 9 2.79 10 1.46 11 1.86 12 1.93
1/32 7 15.60 8 22.13 9 23.81 10 12.11 11 15.74 12 16.49
1/64 7 143.60 8 195.70 9 220.90 10 104.20 11 140.10 13 158.70

Note.The number of iterations and the CPU time in seconds.
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TABLE 4

Maximum Errors of the Computed Solution by the Fourth-Order

Compact and the Central Difference Schemes for Test Problem 1

h Fourth-order scheme Central difference scheme

1/4 3.93(−3) 5.30(−2)

1/8 2.35(−4) 1.30(−2)

1/16 1.43(−5) 3.22(−3)

1/32 9.04(−7) 8.04(−4)

1/64 5.65(−8) 2.01(−4)

of 16 when the meshsize is halved. CDS achieves the second-order convergence rate as
the errors are decreased by a factor of 4 when the meshsize is halved. We note that FOS
yields a solution which is much more accurate than that by CDS. For example, to yield a
solution with maximum error around 2.50(−4), CDS needs a meshsizeh = 1/64; but FOS
only needs a meshsizeh = 1/8. If this fact is translated into CPU time, we see that FOS is
hundreds of times faster than CDS to yield a computed solution of comparable accuracy.

5.2. Test Problem 2

For our second test problem, we consider Eq. (1) withf = 0 and the boundary conditions

u(x, y, z) = sin(πy) sin(πz), x = 0,

u(x, y, z) = 2 sin(πy) sin(πz), x = 1,

u(x, y, z) = 0, y, z = {0, 1}.

The exact solution is

u(x, y, z) = −sin(πy) sin(πz)

sinh(π
√

2)
[2 sinh(π

√
2x) + sinh(π

√
2(1 − x))].

Tables 5–8 contain similar information for Test Problem 2 corresponding to Tables 1–4
for Test Problem 1. Basically, LGS with an injection operator is again shown to be most

TABLE 5

Test Problem 2 withν1 = ν2 = 1 Gauss–Seidel Relaxations

Fourth-order compact scheme Central difference scheme

Injection Red-black Weighting Injection Red-black Weighting

h Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

1/4 8 0.05 8 0.06 8 0.06 12 0.07 12 0.08 11 0.07
1/8 11 0.22 10 0.29 11 0.28 16 0.21 14 0.22 16 0.26
1/16 12 1.71 11 2.26 12 2.31 19 1.57 15 1.52 17 1.77
1/32 13 15.46 11 18.33 12 19.10 21 14.11 16 13.62 18 15.35
1/64 13 141.00 11 163.10 12 178.20 25 140.60 17 124.30 18 133.90

Note.The number of iterations and the CPU time in seconds.
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TABLE 6

Test Problem 2 withν1 = 2,ν2 = 1 Gauss–Seidel Relaxations

Fourth-order compact scheme Central difference scheme

Injection Red-black Weighting Injection Red-black Weighting

h Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

1/4 6 0.05 6 0.06 6 0.06 8 0.05 9 0.06 9 0.06
1/8 8 0.25 9 0.31 9 0.30 11 0.20 12 0.23 12 0.23
1/16 9 1.83 9 2.42 10 2.55 13 1.63 12 1.61 13 1.74
1/32 9 15.55 9 19.94 10 21.40 14 13.13 12 13.55 13 14.63
1/64 9 140.50 9 178.10 10 197.20 14 111.80 12 120.20 13 126.30

Note.The number of iterations and the CPU time in seconds.

efficient and the multigrid method with FOS is much faster than that with CDS for obtaining
a solution of comparable accuracy.

6. CONCLUSIONS

We have shown that the fourth-order compact finite difference scheme (FOS), when
combined with the multigrid techniques, yields a fast and high accuracy 3D Poisson
solver. Fourier smoothing analysis unveiled that FOS is more efficient than CDS in damp-
ing the high frequency errors and is thus a more powerful smoother. We also proposed
a new method of Fourier smoothing analysis to study the partially decoupled red-black
Gauss–Seidel relaxation with the 19-point scheme. Our numerical results showed that FOS
is much more cost-effective than the central difference scheme (CDS) to produce solution
with comparable accuracy. The numerical results are in good agreement with the Fourier
smoothing analysis results.

For the same meshsize, FOS uses the same storage space as CDS does. On the other
hand, due to the perfect symmetry, FOS using a cheap residual injection operator yields
satisfactory performance. In 3D computations, both the memory requirement and CPU time
may become challenging for many computers; employment of high-order schemes is one
of the promising ways to overcome these challenges.

TABLE 7

Test Problem 2 withν1 = ν2 = 2 Gauss–Seidel Relaxations

Fourth-order compact scheme Central difference scheme

Injection Red-black Weighting Injection Red-black Weighting

h Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU Iter. CPU

1/4 5 0.05 5 0.06 4 0.05 6 0.04 7 0.05 7 0.05
1/8 6 0.20 7 0.35 8 0.31 9 0.19 10 0.23 11 0.25
1/16 7 1.95 8 2.70 8 2.49 10 1.43 10 1.65 11 1.79
1/32 7 15.50 8 22.71 8 21.17 10 12.09 10 14.23 11 15.43
1/64 7 144.60 8 204.50 8 196.30 10 104.50 10 129.80 11 133.40

Note.The number of iterations and the CPU time in seconds.
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TABLE 8

Maximum Errors of the Computed Solution by the Fourth-Order

Compact and the Central Difference Schemes for Test Problem 2

h Fourth-order scheme Central difference scheme

1/4 5.14(−3) 5.84(−2)

1/8 3.24(−4) 1.55(−2)

1/16 2.04(−5) 3.94(−3)

1/32 1.27(−6) 9.91(−4)

1/64 7.97(−8) 2.48(−4)

Our conclusion is that the red-black Gauss–Seidel relaxation with the full-weighting
provides fast convergence, but the lexicographic Gauss–Seidel relaxation with the injection
achieves best efficiency. It may be possible to find a scaled injection operator for the red-
black Gauss–Seidel relaxation so that we can combine best convergence and efficiency, as
we did in the 2D case [16, 17].
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